
Elastic Bands: Connecting Path Planning and Control

Sean Quinlan and Oussama Khatib

Robotics Laboratory
Computer Science Department

Stanford University

Abstract
Elastic bands are proposed as the basis for a new

framework to close the gap between global path planning
and real-time sensor-based robot control. An elastic
band is a deformable collision-free path. The initial
shape of the elastic is the free path generated by a
planner. Subjected to artificial forces, the elastic band
deforms in real time to a short and smooth path that
maintains clearance from the obstacles. The elastic con-
tinues to deform as changes in the environment are
detected by sensors, enabling the robot to accommodate
uncertainties and react to unexpected and moving obsta-
cles. While providing a tight connection between the
robot and its environment, the elastic band preserves the
global nature of the planned path. This paper outlines the
framework and discusses an efficient implementation
based on bubbles.

1. Introduction
It is difficult to build a robot system that executes

motion tasks autonomously. The problem has generally
been approached from two directions: path planning and
control.

Path planning uses models of the world and robot to
compute a path for the robot to reach its goal. It has been
shown that the general problem is computationally expen-
sive although much progress has been made in producing
fast planners for practical situations [1]. The output of a
path planner is a continuous path along which the robot
will not collide with the obstacles. However, any model
of the real world will be incomplete and inaccurate, thus
collisions may still occur if the robot moves blindly along
such a path.

Control theory enables a robot to use sensing to close a
feedback loop and interact with the environment in real
time. One conventional application is for the robot to
track a trajectory. More recently, work has been done on
increasing the level of competence of control systems, for
example, by including real-time collision avoidance

capabilities [2]. Such local or reactive behaviors operate
in real time but cannot solve the global problem of mov-
ing to an arbitrary goal.

To build a complete system we would like to combine
these two approaches. A path planner provides a global
solution to move the robot to the goal. A control system
then moves the robot along the path while handling dis-
turbance forces, small changes in the environment and
unexpected obstacles.

The conventional solution is first to convert the path to
a trajectory by time parameterization, then to track the
trajectory. Path planners are often designed to find any
feasible path, with little attention to its suitability for exe-
cution. Even if the time optimal parametrization is used,
the path may have abrupt changes in direction or maintain
little clearance from obstacles, requiring the robot to
move slowly. In addition, if the controller is to imple-
ment some sort of real-time obstacle avoidance scheme
then it must be able to deviate from the path. Once the
robot is off the path, however, the controller has no global
information on how to reach the goal.

2. A New Framework
We propose a new framework to close the gap

between path planning and control. The idea is to imple-
ment local sensor based motions by deforming in real
time the path computed by the planner. We call such a
deforming collision-free path an elastic band [3].

We can view this framework as a three level hierarchy,
as depicted in figure 1. At each level there is a closed
loop with the environment whose reaction time decreases
from slow (at the planning level) to very fast (at the con-
trol level). The three levels are:

� Path planning: A world model is used to generate glo-
bal solutions to specified tasks.

� Elastic bands: The path from the planner is deformed
in real time to handle local changes in the environment
detected by sensors and to smooth the path.



� Control: A conventional control law is used to move
the robot along the elastic band.
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Figure 1. A three level hierarchy for a sys-
tem that executes motion tasks.

The power of this framework is that the behavior of
the robot is not completely determined at the planning
level, yet local behavior does not limit the ability to
achieve global goals. By deforming the path when
changes in the environment are detected, we avoid the
expense of recalling the path planner; the robot can react
in real time to information obtained by sensors. However,
while performing local behaviors we maintain a complete
collision-free path to the goal. This property distin-
guishes the elastic band approach from other attempts to
perform local sensor based motions.

3. Elastic Bands
To illustrate the basic behavior of elastic bands, con-

sider a planar robot that can translate, but not rotate, in an
environment with obstacles. Suppose a path planner has
computed a path for the robot to move between two posi-
tions as depicted in figure 2-a. A controller would experi-
ence difficulty moving along the path since there are
discontinuities in the direction of the path which would
require the robot to come to a complete stop.

To improve the shape of the path we apply two forces:
an internal contraction force and an external repulsive

force. The contraction force simulates the tension in a
stretched elastic band and removes any slack in the path.
To counter the contraction force and to give the robot
clearance around the obstacles, the elastic band is repelled
from the obstacles. The two forces deform the elastic
until equilibrium is reached as shown in figure 2-b.

a) b)

c) d)

Figure 2. a) A path generated by a planner.
b) Applying both an internal contraction force
and a external repulsion force. c, d) A new
moving obstacle deforms the path.

These two forces also enable the elastic band to handle
changes in the environment. The appearance of new obs-
tacles or the detection of uncertainties in the environment
change the forces on the elastic, causing it to deform to a
new equilibrium position. In our example, figures 2-c and
2-d depict the deformation of the path in the presence of
new moving obstacle.

Obviously, if the changes in the environment are large,
the elastic band could fail to deform to a collision-free
path even if one exists. An example of this would be
closing the door through which a robot had planned to
move. A different path, say though a different door, may
exist but to find such a path may require global search.
This problem is typical of local collision avoidance
methods and is the primary reason that path planning is
needed. In such a situation, the failure can be detected
and a new path found by replanning. However, for small
changes, the elastic band is expected to deform to a good
path that reflects the new state of the obstacles.



For the elastic band framework to operate in real time,
we need an efficient implementation. We desire to update
the path at a rate that is only one or perhaps two orders of
magnitude slower that the control system. Of course, the
actual rate depends on the particular application but a rea-
sonable goal might be ten Hertz.

In many respects, elastic bands are similar to snakes
[4]. A snake, as used in computer vision, is a deformable
curve guided by artificial forces designed to pull it
towards features in an image. The major difference is
that an elastic band must represent a collision free path
for the robot. The repulsive force mentioned above tends
to push the elastic away from possible collisions but this
alone is not enough. The problem is that elastic bands,
and snakes as well, are represented by a finite series of
points; the continuous curve is generated from these
points. We must be able to restrict the position of the
points so that the continuous curve is a collision free path.

To check that a curve is collision free, we must exam-
ine the configuration space, or c-space, of the robot [5].
The free space of a robot is the area of the c-space in
which the robot does not touch any obstacles. The deter-
mination of whether a path lies in the free space is diffi-
cult for two reasons. First, the free space is computa-
tionly expensive to generate and difficult to represent.
For even the simple case of a planar polygonal robot and
polygonal obstacles, the boundary of the free space is a
complex curved three dimensional manifold. Second, we
desire a smooth path for the robot and hence are required
to check that curves, rather than line segments, lie in the
free space. The complexity of such computations is
exemplified by the number of path planners that output
paths as a series of line segments.

4. Bubbles: The Key to Implementation

The bubble concept offers an efficient method of
maintaining a collision-free path even in high dimensional
c-spaces. Instead of trying to compute and represent the
entire free space, we use a model of the environment and
robot to generate, on the fly, local subsets of the free
space. Each subset, called a bubble, is computed by exa-
mining the local freedom of the robot at a given confi-
guration.

To make the concept of a bubble more concrete, con-
sider the example described in the previous section of a
planar robot that cannot rotate. The configuration of such
a robot is defined by the position of some point on the
robot. We can define the function ρ(b) that gives the
minimum distance between the robot at configuration b
and the obstacles in the environment. Obviously, the
robot can move up to a distance ρ(b) in any direction and

still be guaranteed not to collide with an obstacle. From
this observation we can define a subset of the free space
around the configuration b using the equation

B(b) = {q :
���

b − q
���

< ρ(b) }.

The subset B(b) is labeled the bubble at b.

An elastic band is represented by a finite series of bub-
bles, constructed from a series of configurations or via
points for the robot. To insure that a collision free path
can be generated between the via points, we impose the
condition that the bubbles at consecutive via points over-
lap. As long as the path remains inside the bubbles, it will
be collision free. Obviously, for the circular bubbles a
straight line between the via points will satisfy this
requirement, however, by selecting more complex curves
we can greatly improve the path from a control point of
view.

Figure 3. The bubbles along a path.

Although the details are not give in this paper, we have
developed a closed form solution for determining
minimum strain energy splines that can be used to con-
struct a path for the robot that is contained by the bubbles
of an elastic band. The resulting path has first order con-
tinuity which is required if the robot is to track the path
without stopping. Figure 3 depicts a series of bubbles and
a path for the robot.

The bubble representation of an elastic band has the
desirable property that the complexity of the representa-
tion is related to the complexity of the situation. When
the robot is far from obstacles, the bubbles will tend to be
large and can hence be spaced far apart. In contrast, if the



robot is maneuvering close to an obstacle then the bubbles
would be smaller and more bubbles are required to
describe the elastic band.

In the example above, the shape of the defined bubbles
is a circle. As bubbles lie in the free space of the robot,
which has a complex shape, a circular bubble can only
coarsely represent the free space around the robot. More
complex shapes, such as ellipses, could be used to better
represent the local free space but there is a tradeoff.
Fewer bubbles may be needed to describe the elastic
band, but each bubble is more difficult to compute. The
effect of this tradeoff might be interesting to investigate.

5. Bubbles for Higher Dimensions
The bubble representation enables elastic bands to be

implemented for complex robots in changing environ-
ments. The dimension of the c-space of a robot typically
equals the number of degrees of freedom of the mechan-
ism. For complex robots in changing environments it is
currently infeasible to compute and represent the global
free space in real time. Using bubbles, we only need
information about the free space around the path, a one
dimensional manifold in the higher dimensional c-space.
Also, the bubbles are computed from local information
such as the function ρ in the above example. Such a
function has completity determined by the representation
used to model the robot and environment and not by the
number of degrees of freedom.

Consider the case where our planar robot can rotate.
In this situation the free space is three dimensional and
quite complex to generate compared to the non rotating
case. In contrast, we can compute three dimensional bub-
bles of free space with almost no extra effort. Assume
that the configuration of the robot is described by a three
dimensional vector b = (x ,y ,θ) for some origin on the
robot and we have calculated a constant r max that
represents the maximum distance from the origin of the
robot to any other point on the robot. If the robot is
moved from configuration b to b′ then the maximum dis-
tance any point on the robot will travel can be bounded by
the function D(b − b′ ) given by

D(∆b) = √
�������������

∆bx
2 + ∆by

2 + r max
�
∆b θ

�
.

Thus, a three dimensional bubble of free space for the
robot can be defined by

B(b) = {q : D(b − q) < ρ(b) }.

Notice that only information about the environment
needed is given by the function ρ just as in the non rotat-
ing case. Similar extensions can be defined for manipula-
tors operating in the plane. A current area of our research

is extending this idea to robots in three dimensional
environments.

6. Manipulating the Bubbles
This section describes how an elastic band, represented

by a series of bubbles, is deformed. The overall strategy
for deforming the elastic band is to scan up and down the
sequence of bubbles, moving each in turn. To maintain
the elastic band as a collision free path, we impose the
constraint that each bubble overlaps with its two neigh-
bors. This constraint may require new bubbles to be
inserted as the elastic band deforms. In addition, it is
desirable to remove redundant bubbles to improve effi-
ciency. Figure 4 shows the manipulation of the bubbles
of an elastic band as an obstacle moves in the environ-
ment.

a) b)

c) d)

Figure 4. As an obstacle moves, the bub-
bles also move to minimize the force on the
elastic band. If needed, bubbles are inserted
and deleted to maintain a collision free path.

The magnitude and direction of the motion of a bubble
is determined by computing an artificial force. In the
current implementation, the artificial force is made up of
an internal contraction force to remove slack in the elastic
band and an external repulsion force to move the elastic
away from the boundary of the free space.

The internal contraction force models the tension in a
physical elastic band. We compute the force for a bubble
at b i using the following equation



f c = k c ( ���
b i − 1 − b i

���b i − 1 − b i��������������������� + ���
b i + 1 − b i

���b i + 1 − b i��������������������� ) ,

where k c is the global contraction gain. The physical
interpretation is a series of springs between the the bub-
bles. The force from each spring is normalized to reflect
a uniform tension along the elastic band.

The repulsive force pushes the bubbles away from the
obstacles to increase the clearance of the robot. The size
of a bubble gives an indication of how far the robot is
from collision so we define the repulsive force such that it
increases this size. In the case of the circular bubbles,
ρ(b) determines the size and one possibility for the repul-
sion force is

f r =

��
� �
� 0

k r (ρ 0 − ρ)
∂b
∂ρ�����

ρ ≥ ρ 0

ρ < ρ 0

where k r is the global repulsion gain and ρ 0 is the dis-
tance up to which the force is applied. To approximate
∂ρ/∂b we use the finite difference equation

∂b
∂ρ	
	�	 =

2h
1	�	�	 �

� ρ(b − hy) − ρ(b + hy)

ρ(b − hx) − ρ(b + hx) � �
where h, the step size, is set to ρ(b).

After computing the total force on a bubble, we need a
method to determine the new position of the bubble. One
simple update equation is

b new = b old + αf total .

The bubble moves along the force, scaled by some factor
α. One possible value for α is ρ(b old ); the bubble moves
a distance proportional to its size. The idea is that as the
bubbles must overlap to form a valid elastic band, small
bubbles should move less than large bubbles.

The above update equation implements a form of
downhill gradient search to find the equilibrium point for
the elastic band. Such methods tend to converge slowly
and many other methods are possible; for example, we
have implemented a version in which an inertial term is
added to the bubbles to simulate a second order control
system. However, the details are more numerical in
nature and do not greatly affect the overall behavior of
the elastic band.

After determining the new position of the bubble, we
must check that the elastic band is still valid. If the bub-
ble at the new position does not overlap a neighboring
bubbles then the elastic band has in effect snapped. In
such a situation, we can attempt to reconnect the elastic
band by inserting a new bubble between the two. If
inserting a single bubble does not reconnect the elastic

band then we declare the move a failure and return the
bubble to its initial position.

Another modification to the elastic band is to remove
redundant bubbles. We can scan the series of bubbles for
situations in which a bubble’s neighbors overlap each
other, allowing the bubble to be removed without break-
ing the elastic band. Deleting a bubble is desirable
because it reduces the number of bubbles that need to be
manipulated and thus reduces the computation required to
update the elastic band.

The insertion of new bubbles and the removal of
redundant bubbles can cause an undesirable side effect.
In certain situations, bubbles can be inserted at one point,
migrate along the elastic band, and then be removed at
another point. The sequence can continue indefinitely
and hence the elastic band oscillates in an unstable
fashion. One solution to this problem consists of modify-
ing the total force applied to the elastic band such that the
tangential component is removed. Such a modified force
inhibits the migration of bubbles along the elastic band.
Mathematically, the modified force f* is given by the for-
mula

f* = f − ���
b i − 1 − b i + 1

���
2

f .(b i − 1 − b i + 1 )(b i − 1 − b i + 1 )� ����������������������������������������������� .

a) b)

c) d)

Figure 5. An elastic band for a stick robot.
The elastic band deforms in the same fashion
as the non rotating case, however the bubbles
have three dimensions.



So far, we have discussed the case of two dimensional
circular bubbles. The extension to other bubble shapes
and dimensions is not difficult. Figure 5 shows an elastic
band for a stick robot that can rotate. The bubbles are
three dimensional and have the structure described previ-
ously. Due to the inability to display three dimensional
bubbles we show the configuration of the robot at the
center of each bubble. The elastic band deforms as an
obstacle moves in the environment.

7. Future Work
Future work will focus on implementing the elastic

band framework for a Puma 560 robot moving in a
dynamic environment. The challenge is to achieve real-
time performance using a model of the environment that
is generated by sensor data. To compute a bubble of free
space for a given configuration, we need to determine the
distance of each link from the obstacles. If an elastic
band consists of one hundred bubbles and we desire to
modify the elastic at ten Hertz, these distances must be
computed in the order of one millisecond. To meet such
an objective will require the development of appropriate
models for the robot and the environment and the use of
high performance multi processor computers.

8. Conclusion
Elastic bands form the basis for an effective frame-

work to deal with real-time collision-free motion control
for a robot operating in an evolving environment. A
planner provides an initial path that is a solution to the
problem of moving a robot between a start and goal confi-
guration. Incremental adjustments to the path are made
while maintaining a global path in the free space. These
modifications are based on sensory data about the
environment and desired criteria concerning the path,
such as length, smoothness, and obstacle clearance.
Implemented as a real-time servo-loop, an elastic band
provides many of the benefits of reactive systems without
sacrificing global planning.

Bubbles enable elastic bands to be implemented to
operate in real time. A bubble is a local region of free
space around a configuration of the robot. The bubbles
are in the configuration space of the robot, but we do not
compute the global free space. The bubbles are generated
by local information obtained directly from a model of the
environment and can be implemented efficiently for com-
plex robots.
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